

Agilent 4268A
 $120 \mathrm{~Hz} / 1 \mathrm{kHz}$ Capacitance Meter

Data Sheet

1. Basic Specifications

Measurement parameters

- Cp-D, Cp-Q, Cp-Rp, Cp-G
- Cs-D, Cs-Q, Cs-Rs

Where:
Cp: Measured capacitance value using the parallel equivalent circuit model
Cs: Measured capacitance value using the series equivalent circuit model
D: Dissipation factor
Q: Quality factor (inverse of D)
G: Measured equivalent parallel conductance using the parallel equivalent circuit model
Rp: Measured equivalent parallel resistance using the parallel equivalent circuit model
Rs: Measured equivalent series resistance using the series equivalent circuit model

Measurement conditions

- Measurement signal

Frequency $\quad 120 \mathrm{~Hz} \pm 1 \%, 1 \mathrm{kHz} \pm 0.05 \%$
Level $\quad 0.1 \mathrm{~V}$ to 1.0 V , resolution 0.01 V, accuracy $\pm 10 \%$
Output mode Continuous, synchronous
Source delay time 0 to 1.000 s , resolution 1 ms (Effective when Output mode is set to the synchronous mode)

- Measurement cable length: $0 \mathrm{~m}, 1 \mathrm{~m}, 2 \mathrm{~m}$ (N.B., DC resistance of $\mathrm{H}_{\mathrm{CUR}}$ and $\mathrm{L}_{\mathrm{CUR}}$ cable: 0.3Ω or less per cable)
- Measurement time mode: Short, Med, Long
- Measurement range selection: Automatic (Auto), manual (Hold)
- Measurement range:

When the measurement frequency is 120 Hz : $10 \mathrm{nF}, 100 \mathrm{nF}, 1 \mu \mathrm{~F}, 10 \mu \mathrm{~F}, 100 \mu \mathrm{~F}, 1 \mathrm{mF}$. When the measurement frequency is 1 kHz : $1 \mathrm{nF}, 10 \mathrm{nF}, 100 \mathrm{nF}, 1 \mu \mathrm{~F}, 10 \mu \mathrm{~F}, 100 \mu \mathrm{~F}$.

- Averaging: 1 to 256 times
- Trigger mode: Internal (INT), manual (MAN), external (EXT), bus (BUS)
- Trigger delay time: 0 to 1.000 s , resolution 1 ms

Display range of measurement value

Parameter	Display range of measurement value
Cs, Cp	-9.9999 mF to $-0.0001 \mathrm{nF}, 0,0.0001 \mathrm{nF}$ to 9.9999 mF
D	-9.9999 to $-0.0001,0,0.0001$ to 9.9999
0	-9999.9 to $-0.1,0,0.1$ to 9999.9
Rs, Rp	$-999.99 \mathrm{M} \Omega$ to $-0.01 \mathrm{~m} \Omega, 0,0.01 \mathrm{~m} \Omega$ to $999.99 \mathrm{M} \Omega$
G	-9.9999 kS to $-0.0001 \mu \mathrm{~S}, 0,0.0001 \mu \mathrm{~S}$ to 9.9999 kS
$\Delta \%$	-999.99% to $-0.01 \%, 0,0.1 \%$ to 999.99

Measurement accuracy

The accuracy is defined when all of the following conditions are met.

- Warm up time is 30 minutes or more.
- The OPEN and SHORT corrections have been performed.
- $\mathrm{D} \leq 0.5$

Accuracy of Cp and Cs

Accuracy Ae [\%], which is the base of the accuracy of Cp and Cs (Cpe and Cse [\%]), is calculated as follows:

Equation 1: Equation to calculate $\mathbf{A e}$

$\mathrm{A} e=\left[A+B+K_{L} 3 \beta+1003 E 3(23 \pi 3 f 3 C x)\right] 3 K_{T}$
Where:
$\beta=C r / C x$ when $\mathrm{Cr} \leq 100 \mu \mathrm{~F}(@ 120 \mathrm{~Hz})$ or $\mathrm{Cr} \leq 10 \mu \mathrm{~F}$ (@ 1 kHz)
$\beta=C r / C x+C x / C r$ when $\mathrm{Cr}=1 \mathrm{mF}(@ 120 \mathrm{~Hz})$ or $\mathrm{Cr}=100 \mu \mathrm{~F}$ (@ 1 kHz) (n.b., if $\beta<1, \beta=1$)
$C x$: Measurement value of Cp or Cs
$C r$: Measurement range ($1 \mathrm{nF}, 10 \mathrm{nF}, 100 \mathrm{nF}$, $1 \mu \mathrm{~F}, 10 \mu \mathrm{~F}, 100 \mu \mathrm{~F}, 1 \mathrm{mF}$)
f : Measurement frequency
A: Proportional error term
(values are shown in Table 3)
B: Offset error term
(values are shown in Table 3)
K_{L} : Coefficient for measurement signal level (values are shown in Table 1)
E: \quad Residual when shorted, the value is $E=600 \mu \Omega$ (fixed)
K_{T} : Coefficient for ambient temperature
(values are shown in Table 2)

Table 1. Coefficient caused by measurement signal level, KL

Measurement signal level, level [V]	$\mathbf{K}_{\mathbf{L}}$
0.1 to 0.3	$0.3 /$ level
0.31 to 0.5	$0.5 /$ level
0.51 to 1.0	$1.0 /$ level

Table 2. Coefficient caused by ambient temperature, KT

Ambient temperature $\mathrm{T}\left[{ }^{\circ} \mathrm{C}\right]$	$\mathbf{K}_{\mathbf{T}}$
$0 \leq \mathrm{T}<18$	3
$18 \leq \mathrm{T} \leq 28$	1
$28<\mathrm{T} \leq 55$	3

Table 3. Proportional term A and offset term B

Cr (measurement range)		$120 \mathrm{~Hz}$			SHORT ${ }^{1 \mathrm{kHz}}$		LONG
1 nF	A	-	-	-	0.18	0.14	0.14
	B	-	-	-	0.062	0.052	0.049
10 nF	A	0.28	0.14	0.14	0.18	0.14	0.14
	B	0.1	0.054	0.05	0.041	0.036	0.035
100 nF	A	0.28	0.14	0.14	0.18	0.14	0.14
	B	0.077	0.037	0.035	0.041	0.036	0.035
$1 \mu \mathrm{~F}$	A	0.28	0.16	0.16	0.18	0.14	0.14
	B	0.077	0.037	0.035	0.041	0.036	0.035
$10 \mu \mathrm{~F}$	A	0.28	0.16	0.16	0.18	0.14	0.14
	B	0.077	0.037	0.035	0.041	0.036	0.035
$100 \mu \mathrm{~F}$	A	0.4	0.4	0.4	0.4	0.4	0.4
	B	0.077	0.037	0.035	0.066	0.049	0.044
1 mF	A	0.8	0.8	0.8	-	-	-
	B	0.106	0.052	0.045	-	-	-

Cpe and Cse [\%] are derived from the calculated accuracy Ae [\%], using the equation "Cpe = Cse = $\pm A e$ [\%]." Note that if the measured D value, Dx , exceeds 0.1 , multiply Cpe and Cse by $\left(1+D x^{2}\right)$.

NOTE: If the secondary parameter is not D , calculate D using the equation in Table 4.

Table 4. Calculating D
Measurement parameter Equation to calculate D

Cp-Q, CS-Q	$\mathrm{D}=1 / Q x$
Cp-G	$\mathrm{D}=G x /(23 \pi 3 f 3 C p x)$
Cp-Rp	$\mathrm{D}=1 /(23 \pi 3 f 3 C p x 3 R p x)$
Cs-Rs	$\mathrm{D}=23 \pi 3 f 3 C s x 3 R s x$

In Table 4, Cpx, $Q x, G x, R p x$, $C s x$, and $R s x$ are measured values, and f is the measurement frequency.

Accuracy of D

The accuracy of D, De, is calculated as follows, using Ae [\%]:

Equation 2: Equation to calculate De when Dx < 0.1 and

$\mathrm{Ae} \leq 10$ [\%]
$D e= \pm A e / 100$
Equation 3: Equation to calculate De when $0.1<\mathrm{Dx} \leq 0.5$
and $\mathrm{Ae} \leq 10$ [\%]
$D e= \pm(A e / 100) 3(1+D x) 31+D x^{2}$
NOTE: The accuracy of D is expressed in an absolute value, instead of a percentage.

Accuracy of 0

The accuracy of $\mathrm{Q}, Q e$, is calculated as follows, using the accuracy of $\mathrm{D}, D e$:

Equation 4: Equation to calculate $\mathbf{0 e}$

$0 e= \pm 0 x^{2} 3 D e /(170 x 3 D e)$
Where: $Q x$ is the measured Q value. Note that if $Q x 3 D e$ is 1 or more, $Q e= \pm \infty$.

NOTE: The accuracy of Q is expressed in an absolute value, instead of a percentage.

Accuracy of G

The accuracy of G, $G e$ [\%], is calculated as follows, using the base accuracy for Cp, Ae [\%]:

Equation 5: Equation to calculate Ge

$G e= \pm A e /(G x /(23 p 3 f 3 C p x))$
Where: $G x$ is the measured G value, $C p x$ is the measured Cp value, and f is the measurement frequency. Note that, if $D x$ exceeds 0.1 , multiply $G e$ by $\left(1+D x^{2}\right)$.

Accuracy of Rp

The accuracy of Rp, Rpe [\%], is calculated as follows, using the accuracy of G, Ge [\%]:

Equation 6: Equation to calculate Rpe

$R p e= \pm G e /(17 \mathrm{Ge} / 100)$

Note that if $G \mathrm{e}$ is 100 [\%] or more, $R p e= \pm \infty[\%]$.

Accuracy of Rs

The accuracy of Rs, Rse [\%], is calculated as follows, using the base accuracy for Cp and Cs , Ae [\%]:

Equation 7: Equation to calculate Rse
Rse $= \pm A e /(23$ p $3 f 3$ Cpx 3 Rsx)
Where, $R s x$ is the measured Rs value, $C s x$ is the measured Cs value, f is the measurement frequency. Note that, if $D x$ exceeds 0.1 , multiply Rse by $\left(1+D x^{2}\right)$.

Measurement support functions

- Measurement signal level monitor function The measurement voltage and measurement current can be monitored.

- Correction function

The OPEN correction, SHORT correction, and LOAD correction are available.

- Display

40-digit 3 2-line LCD display.

- Deviation measurement function

Deviation from the reference value and the percent deviation from the reference value can be outputted as the result.

- Comparator function

Bin sort: Primary parameters can be sorted into 9 Bin, Out of Bins, and Aux Bin; the secondary parameters into High, In, and Low.

Limit setting: absolute mode, absolute tolerance mode, percent tolerance mode.

Bin count: 0-999999 can be counted.

- Save/recall function

Up to ten setting conditions can be saved/recalled using the built-in nonvolatile memory.

- Resume function

The instrument setting is automatically saved at power-off.

- Key lock function

The front-panel keys can be disabled.

- Contact check function

Automatic detection of contact failure between the measurement terminal and the DUT.
(Available in the 4-terminal measurement)

- GPIB interface

Compliance with IEEE 488.1,2 and SCPI.

- Handler interface

Negative-logic input/output signals.
Opto-isolated open collector signal.
Output signals Bin 1-Bin 9, Out of Bins, Aux_Bin, P-Hi, P-Lo, S-Reject, INDEX, EOM, Alarm, OVLD, NC.

Input signals Keylock, Ext-Trigger.

- Scanner interface (Option 4268A-001)

The OPEN/SHORT/LOAD correction of sixty-four channels are available.

NOTE: The 4268A has the following interface options.

Option 4268A-001: GPIB/handler/scanner interface
Option 4268A-002: GPIB/handler interface

2. General Specifications

Power supply	
Voltage	90 VAC to 132 VAC, 198 VAC to 264 VAC
Frequency	47 Hz to 66 Hz
Power consumption	40 W maximum/ 100 VA maximum
Operation conditions	
Temperature	$0{ }^{\circ} \mathrm{C}$ to $45{ }^{\circ} \mathrm{C}$
Humidity ($\leq 40{ }^{\circ} \mathrm{C}$, without condensation)	15\% to $95 \% \mathrm{RH}$
Altitude	0 m to 2000 m
Non-operation conditions	
Temperature	$-40{ }^{\circ} \mathrm{C}$ to $70{ }^{\circ} \mathrm{C}$
Humidity ($\leq 65{ }^{\circ} \mathrm{C}$, without condensation)	0\% to $90 \% \mathrm{RH}$
Altitude	0 m to 4572 m

EMC

- Compliance with CISPR 11(1990)/EN 55011 (1991): Group 1, Class A
- Compliance with EN 61000-3-2 (1995)/IEC 61000-3-2 (1995)
- Compliance with EN 61000-3-3 (1995)/IEC 61000-3-3 (1994)
- Compliance with EN 50082-1 (1992)/IEC 61000-4-2 (1995): 4 kV CD, $8 k V A D$
- Compliance with EN 50082-1 (1992)/IEC 61000-4-3 (1995): $3 \mathrm{~V} / \mathrm{m}, 80 \% \mathrm{AM}$, 27 MHz to 1000 MHz
- Compliance with EN 50082-1 (1992)/IEC 61000-4-4 (1995): 0.5 kV Signal Lines, 1 kV Power Lines

Safety

- Compliance with IEC 61010-1 (1990) +A1 (1992) +A2 (1995), CAN/CSA C22.2 No.1010.1-92

Outer dimensions

Approximately 320 mm (W) 3100 mm (H) 3450 mm (D)

Figure 1. Front view

Figure 2. Rear view

Figure 3. Side view

Weight

Approximately 5 kg

3. Supplemental Performance Characteristics

This section shows the reference data related to the operation of the 4268A other than the specifications.

The data are not specifications but typical characteristics useful to operate the instrument.

ALC (auto level control) function Operating measurement range setting

When the measurement frequency is 120 Hz :
$100 \mu \mathrm{~F}$ range, 1 mF range
When the measurement frequency is 1 kHz :
$10 \mu \mathrm{~F}$ range, $100 \mu \mathrm{~F}$ range
If the ALC is to operate below its measurement range, the output of the signal voltage level will be judged depending upon whether the conditions below are satisfied or not.

Vset 30.9 < Vmon < Vset 31.1
Vset: measurement signal voltage setting Vmon: Applied signal voltage to the DUT

Operating range

Figure 4. Operating range of the ALC function

Table 5. Operating range of the ALC

Measurement frequency	DUT		Measurement Voltage	
	Dissipation factor	Capacitance C	Minimum	Maximum
120 Hz	D ≤ 0.2	$\mathrm{C} \leq 600 \mu \mathrm{~F}$	0.1 V	$\begin{aligned} & 1.0 \mathrm{~V} \\ & (600 \mu \mathrm{~F} / \mathrm{C}) \mathrm{V} \end{aligned}$
		$600 \mu \mathrm{~F}<\mathrm{C} \leq 1200 \mu \mathrm{~F}$	0.1 V	
		$\mathrm{C}>1200 \mu \mathrm{~F}$	Out of range	
	$0.2<$ D 0.5	$\mathrm{C} \leq 600 \mu \mathrm{~F}$	0.1 V	1.0 V
		$\mathrm{C}>600 \mu \mathrm{~F}$	Out of range	
	D >0.5	All	Out of range	
1 kHz	$\mathrm{D} \leq 0.2$	$\mathrm{C} \leq 70 \mu \mathrm{~F}$	0.1 V	$\begin{aligned} & 1.0 \mathrm{~V} \\ & (70 \mu \mathrm{~F} / \mathrm{C}) \mathrm{V} \end{aligned}$
		$70 \mu \mathrm{~F}<\mathrm{C} \leq 140 \mu \mathrm{~F}$	0.1 V	
		$\mathrm{C}>140 \mu \mathrm{~F}$	Out of range	
	$0.2<\mathrm{D} \leq 0.5$	$\mathrm{C} \leq 70 \mu \mathrm{~F}$	0.1 V	1.0 V
		$\mathrm{C}>70 \mu \mathrm{~F}$	Out of range	
	D >0.5	All	Out of range	

Measurement time

Table 6 shows the measurement times when the measurement settings are as follows.

Display	Off
Measurement range mode	Hold
Averaging	1
Source delay time	0 ms
Trigger delay time	0 ms

Table 6. Measurement time

| | Short | | Med | | Long | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Measurement time
 Unit | Min. | Max. | Min. | Max. | Min. | Max. |

The values in () are the measurement times when the contact check function is ON.

Table 7. Measurement range of capacitance

Measurement range	Recommended measurement range [F]		Effective measurement range [F]	
	Measurement frequency: 120 Hz	Measurement frequency: $\mathbf{1}$ kHz	Measurement frequency: 120 Hz	Measurement frequency: $\mathbf{1} \mathbf{k H z}$
1 nF	-	0.2 n to 2 n	-	0 to 2 n
10 nF	2 n to 20	2 n to 20	0 to 20 n	0 to 20 n
100 nF	20 n to 200 n	20 n to 200 n	0 to 200	0 to 200
$1 \mu \mathrm{~F}$	0.2μ to 2μ	0.2μ to 2μ	0 to 2μ	0 to 2μ
$10 \mu \mathrm{~F}$	2μ to 20μ	2μ to 20μ	0 to 20μ	0 to 20μ
$100 \mu \mathrm{~F}$	20μ to 200μ	20μ to 200μ	0 to 200μ	0 to ∞
1 mF	0.2 m to 2 m	-	0 to ∞	-

Table 8. Effective measurement range ($\mathrm{D} \leq 0.5$)
Effective measurement range [F]

Measurement range	Measurement frequency: 120 Hz		Measurement frequency: $1 \mathbf{k H z}$	
	Minimum	Maximum	Minimum	Maximum
1 nF	-	-	100 p	2 n
10 nF	1 n	20 n	1 n	20 n
100 nF	10 n	200 n	10 n	200 n
$1 \mu \mathrm{~F}$	100 n	2μ	100 n	2μ
$10 \mu \mathrm{~F}$	1μ	20μ	1μ	20μ
$100 \mu \mathrm{~F}$	10μ	200μ	10μ	200μ
1 mF	200μ	2μ	-	-

Measurement signal source output impedance

When the auto level control function is OFF 1.5Ω or less (without extension cable)
When the auto level control function is ON
When the measurement frequency is 120 Hz
Measurement range: 10 nF to $10 \mu \mathrm{~F}$
1.5Ω or less (without extension cable)
Measurement range: $100 \mu \mathrm{~F}$ to 1 mF
0.1Ω or less (without extension cable)
When the measurement frequency is 1 kHz
Measurement range: 1 nF to $1 \mu \mathrm{~F}$
1.5Ω or less (without extension cable)
Measurement range: $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$
0.1Ω or less (without extension cable)
Measurement voltage monitor function
Accuracy

$$
\pm(2 \%+2 \mathrm{mV})
$$

Resume function

Data holding time $\quad 72$ hours $\left(23{ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$

Measurement circuit protection

The following table shows the maximum discharge withstand voltage below which the internal circuit is protected even if a charged capacitor is connected to UNKNOWN terminal.

NOTE: Connect the charged capacitor to the UNKNOWN terminals or test fixture after it has discharged.

Maximum capacitor voltage	Range of capacitance \boldsymbol{C} of measured DUT
250 V	$\mathrm{C}<32 \mu \mathrm{~F}$
$\sqrt{2 / C} \mathrm{~V}$	$\mathrm{C} \geq 32 \mu \mathrm{~F}$

Figure 5. Maximum capacitor voltage

Sample calculation of measurement accuracy

This section gives you sample calculations of the measurement accuracy for each measurement parameter, assuming the measurement conditions shown below.

Measurement frequency	1 kHz
Measurement level	1 V
Measurement range	$10 \mu \mathrm{~F}$
Measurement time	Med
Ambient temperature	$28^{\circ} \mathrm{C}$

Measurement parameter: Cp (or Cs)-D
The following sample calculation shows you how to calculate the Cp (or Cs) accuracy, Cpe or Cse [\%], and the D accuracy, De, assuming that the measured Cp (or Cs) value is $9.8765 \mu \mathrm{~F}$ and the measured D value is 0.0123 .

The measurement range is $10 \mu \mathrm{~F}$ and the measured Cp (or Cs) value is $9.8765 \mu \mathrm{~F}$, so therefore,
$\beta=10 \mu / 9.8765 \mu=1.0125$
measurement frequency $f=1000$
$\mathrm{A}=0.14, \mathrm{~B}=0.036$ (from Table 3)
$\mathrm{K}_{\mathrm{L}}=1.0 / 1.0=1$ (from Table 1)
$\mathrm{E}=0.0006$
$\beta=10 \mu / 9.8765 \mu=1.0125$
$K_{T}=1$ (from Table 2)
Substituting these values into the equation yields the following result:
$A e=[0.14+0.036 \times 1 \times 1.0125+100 \times 0.0006 \times$ $\left.\left(2 \times \pi \times 1000 \times 9.8765 \times 10^{-6}\right)\right] \times 1=0.180$ [\%]

Because D < 0.1, Cpe or Cse is ± 0.180 [\%]. On the other hand, the measured D value is 0.0123 and the calculated Ae value is 0.180 [\%], and therefore, using Equation 2, $D e= \pm 0.180 / 100> \pm 0.0018$ is obtained. As a result, the true Cp (or Cs) value falls within $9.8765 \pm(9.8765 \times 0.0178[\mu \mathrm{~F}]$, i.e., a range between 9.8587 and $9.8943[\mu \mathrm{~F}]$; the true D value, 0.0123 ± 0.0018, falls within a range between 0.0105 and 0.0141 .

Measurement parameter: Cp (or Cs)-0

The following sample calculation shows you how to calculate the Cp (or Cs) accuracy, Cpe (or Cse) [\%], and the Q accuracy, Qe, assuming that the measured Cp (or Cs) value is $9.8765 \mu \mathrm{~F}$ and the measured Q value is 9.8765 .

The measurement frequency is 1 kHz and the measured Cp (or Cs) is $9.8765 \mu \mathrm{~F}$. By performing calculation in the same way as Cp-D, $A e=0.180$ [\%] is obtained. Because $\mathrm{D}=1 / 9.8765 \cong 0.1013>0.1$, multiply $\left(1+0.1013^{2}\right)$. The calculated Cpe or Cse is ± 0.182 [\%]. On the other hand, the calculated D value is 0.1013 and the calculated $A e$ value is 0.180 [\%]. To obtain $D e$, first, use Equation 10-3. The result is
$D e= \pm(0.180 / 100) \times(1+0.1013) \times \sqrt{1+0.1013^{2}} \cong \pm 0.0020$
Then, use the obtained $D e$ and Equation 4. The result is $Q e= \pm 9.8765^{2} \times 0.0020 /(1 \pm 9.8765 \times$ $0.0020)=-0.1913 \sim 0.1990$. As a result, the true Cp (or Cs) value falls within a range between 9.8586 and 9.8944 [$\mu \mathrm{F}$]; the true Q value falls within a range between 9.6852 and 10.076.

Measurement parameter: Cp-G

The following sample calculation shows you how to calculate the Cp accuracy, Cpe [\%], and the G accuracy, Ge [\%], assuming that the measured Cp value is $9.8765 \mu \mathrm{~F}$ and the measured G value is 0.0123 .
$D=0.0123 /\left(2 \times \pi \times 1000 \times 9.8765 \times 10^{-6}\right) \cong 0.1982>0.1$
Therefore, multiply the calculated $A e$ value by $\left(1+0.1982^{2}\right)$. The result of $C p e$ is ± 0.187 [\%]. On the other hand, from Equation 5,
$\mathrm{Ge}= \pm 0.180 /\left(0.0123 /\left(2 \times \pi \times 1000 \times 9.8765 \times 10^{-6}\right)\right)=$ ± 0.908 [\%]

Because $\mathrm{D}>0.1$, multiply by $\left(1+0.1982^{2}\right)$ in the same way as Cpe. The final result of $G e$ is ± 0.943 [\%].

Measurement parameter: Cp-Rp

The following sample calculation shows you how to calculate the Cp accuracy, Cpe [\%], and the Rp accuracy, Rpe [\%], assuming that the measured Cp value is $9.8765 \mu \mathrm{~F}$ and the measured Rp value is 123.45Ω.
$D=1 /\left(2 \times \pi \times 1000 \times 9.8765310^{-6} \times 123.45\right) \cong 0.1305>0.1$

Therefore, multiply the calculated $A e$ by $\left(1+0.1305^{2}\right)$. The result of Cpe is ± 0.183 [\%]. On the other hand, $G x=1 / R p x=1 / 123.45=0.0081$. Therefore, perform the calculation in the same way as Cp-G. The result of $G e$ is ± 1.402 [\%]. From Equation 6, Rpe $= \pm 1.402 /(1 \pm 1.042 / 100)$ $=-1.383 \sim 1.422$ [\%] is obtained.

Measurement parameter: Cs-Rs

The following sample calculation shows you how to calculate the Cs accuracy, Cse [\%], and the R accuracy, Rse [\%], assuming that the measured Cs value is $9.8765 \mu \mathrm{~F}$ and the measured Rs value is 2.3456Ω.
$D=23 \pi \times 1000 \times 9.8765310^{-6} \times 2.3456 \cong 0.1456>0.1$
Therefore, multiply the calculated $A e$ by $\left(1+0.1456^{2}\right)$. The result of Cse is ± 0.182 [\%]. On the other hand, from Equation 7,
$R s e=0.180 /\left(2 \times \mathrm{p} \times 1000 \times 9.8765 \times 10^{-6} \times 2.3456\right)$ $\cong 1.237$ [\%]. Because $\mathrm{D}>0.1$, multiply by $\left(1+0.1456^{2}\right)$ in the same way as Cse. The final result of $R s e$ is ± 1.263 [\%].

4. GPIB Command Information

Table 9 lists the Agilent 4268A GPIB commands sorted according to function. Table 9 additionally provides compatible Agilent 4278A GPIB commands.

Refer to Chapter 6, GPIB Command Reference, of the 4268A operation manual for more detail. Refer to the 4278A operation manual for its detailed information.

Table 9. GPIB command table (4268A command vs. 4278A command)

Function	Setting/operation		GPIB command	
			Agilent 4268A	Agilent 4278A
Measurement condition	Reset		:SYSTem:PRESet, *RST	*RST
	Signal	Frequency	:SOURce:FREQuency[:CW]	FRE01, FRE02
		Level	:SOURce:VOLTage[:Level][:MMediate][:AMPLitude]	OSC =
		ALC	:SOURce:VOLTage:ALC[:STATe]	None
		Output mode	:SOURce:VOLTage:MODE	None
		Source delay time	:TRIGger[:SEQuence1]:DELay	None
	Parameter	Primary	:CALCulate1:FORMat	MPAR1, MPAR2, MPAR3, MPAR4, MPAR5, MPAR6
		Secondary	:CALCulate2:FORMat	
	Deviation measurement	On/off	:CALCulate1:MATH:STATe CALCulate2:MATH:STATe	None
		Mode	:CALCulate1:MATH:EXPRession:NAME, :CALCulate2:MATH:EXPRession:NAME	None
		Reference value	:DATA[:DATA]	None
	Range	Auto range	[:SENSe][:FIMPedance]:RANGe:AUTO	RAO
		Range	[:SENSe][:FIMPedance]:RANGe[:UPPer]	RA1, RA2, RA3, RA4, RA5, RA6, RA7
	Measurement time		[:SENSe][:FIMPedance]:APERture[:MODE]	ITIM1, ITIM2, ITIM3
	Average	On/off	[:SENSe]:AVERage[:STATe]	None
		Count	[:SENSe]:AVERage:COUNt	AVE=
	Cable length		:CALibration:CABLe	CABL0, CABL1, CABL1
	Trigger delay time		:TRIGger:SEQuence2:DELay	DTIM=
	Trigger mode		:TRIGger[:SEQuence1]:SOURce	TRIG1, TRIG2, TRIG3
Trigger	Triggering		:TRIGger[:SEQuence1][:IMMediate], *TRG	*TRG
	Trigger system reset		:ABORt	None
	Trigger system operation		:INITiate[:IMMediate]	None
	Trigger system operation setti		:INITiate:CONTinuous	None
Data output	Data transfer format setting		:FORMat[:DATA]	DFMT1, DFMT2
	Read data		:DATA[:DATA], :FETCh?, :READ?	DATA?
	Data transfer format		:FORMat[:DATA]	None
	Data buffer setting	Data feed	:DATA:FEED	None
		Feed (yes or no)?	:DATA:FEED:CONTrol	None
		Size: Number of points	:DATA:POINts	None

Table 9 continued.

Table 9 continued.

Function	Setting/operation		GPIB command	
			Agilent 4268A	Agilent 4278A
Status reporting structure	Clear		*CLS	*CLS
	Read status byte register value		*STB?	*STB?
	Mask setting for service request Enable register		*SRE	*SRE
	Standard event Status register	Read register value	*ESR?	None
		OPC bit setting when operation completes	*OPC	None
		Mask setting for enable register	*ESE	None
	Standard Operation status group	Clear	:STATus:PRESet	None
		Read register value	:STATus:OPERation:CONDition?, :STATus:OUEStionable:CONDition	None
		Mask setting for enable register	:STATus:OPERation:ENABIe, STATus:QUEStionable:ENABIe	None
		Read event register value	STATus:OPERation[:EVENt]?, STATus:QUEStionable[:EVENt]	None
Others	Self test operation		*TST?	$\begin{aligned} & \text { TENT, TNO=, TST, TAB, } \\ & \text { TDA?, TEND } \end{aligned}$
	Read product information		*IDN?	*IDN?
	Read option Information		*OPT?	*OPT?
	Read 1 when operation completes		*OPC?	None
	Read error Information		:SYSTem:ERRor?	ERR?
	Read SCPI version		:SYSTem:VERSion?	None
	Wait for command		*WAI	None

5. Handler Interface Information

Outputting the comparator result

Via the handler interface, the sorting result of the comparator is outputted. The relationship between the comparator result and the output signals of the handler interface (/BIN1- /BIN9, /AUX BIN, /OUT OF BINS, /PHI, /PLO, /SREJ) is shown below.

NOTE: If the comparator function is OFF, the signals are not outputted except for /INDEX, /EOM, and /ALARM. /INDEX and /EOM are kept outputted (Low). /ALARM is outputted when an error occurs, in the same way as when the comparator is ON. Note that EXT TRIG is valid, regardless of ON/OFF of the comparator function, if the trigger mode is Ext (external).

Pin assignment of the input/output signals

 Figure 7 shows the pin assignment of each input/output signal of the handler interface connector. Table 10 describes the input/output signals.NOTE: The / (slash) before signal names means that the signal is negative logic (active low).

Output from /BIN1-9, /OUT_OF_BINS, /AUX_BIN Output from /PHI, /PLO, /SREJ

Signals encircled with () are outputted when the AUX BIN function is $O N$.
Signals shaded with
for primary parameters.
Figure 6. Output of the comparator result to the handler interface

Figure 7. Pin assignment of the handler interface connector

Table 10. Description of the handler interface input/output signals

Pin number	Signal name	Description
1	/BIN1	Screening result signals (output). A BIN signal for the screening result (one of pins 1 to 11) goes Low. Note that, if a contact
2	/BIN2	
3	/BIN3	
4	/BIN4	
5	/BIN5	
6	/BIN6	
7	/BIN7	
8	/BIN8	
9	/BIN9	
10	/OUT_OF_BINS	
11	/AUX_BIN	
12,13	EXT_TRIG	External trigger signals (input). These are valid when the trigger mode is set to EXt (external). The rising edge of a pulse generates a trigger.
14,15	EXT_DCV2	External DC voltage (input). These supply voltage for the input signals (EXT TRIG, /KEY LOCK) and the operation output signals (/ALARM, /INDEX, /EOM). The input voltage range is from +5 V to +15 V .
16,17,18	$+5 \mathrm{~V}$	Internal DC voltage (output).
19	/PHI	Over primary parameter upper limit signal (output). If the upper limit value of BIN1 to BIN9 is exceeded, it goes Low.
20	/PLO	Below primary parameter lower limit signal (output). If the lower limit value of BIN1 to BIN9 is not reached, it goes Low.
21	/SREJ	Secondary parameter out-of-limit signal (output). If the secondary parameter goes out of the allowable limit, it goes Low.
22	(reserved)	Not used at present. Do not connect anything.
23	/NO_CONTACT	Contact check failure signal (output). If the contact check is failed, it goes Low.
24	/OVLD	Measurement impossibility signal (output). If the measurement is impossible at the analog measurement part, it goes Low.
25	/KEY_LOCK	Key lock signal (input). Setting this signal to Low disables the use of all the front panel keys of the Agilent 4268A.
26	(reserved)	Not used at present. Do not connect anything.
27, 28	EXT DCV1	External DC voltage (input). These supply voltage for the judgement output signals (/BIN1-/BIN9, /AUX BIN, /OUT OF BINS, /PHI, /PLO, /SREJ, /OVLD, /NO CONTACT). The input voltage range is from +5 V to +24 V .
29	/ALARM	Error occurrence signal (output). In the case of abnormal self test result, momentary failure of the power supply, or abnormal operation of a certain circuit, it goes Low. In the case of momentary failure of the power supply, it is Low only while the power supply is down.
30	/INDEX	Analog measurement completion signal (output). When the analog measurement is completed, it goes Low. When the handler receives this signal, it gets ready for the next DUT to be connected. Note that, until it receives the /EOM signal, measurement data cannot be obtained.
31	/EOM	Measurement cycle completion signal (output). When a series of measurement steps is completed and the measurement data screening result becomes valid, it goes Low.
32,33	COM2	Common for the external DC voltage of EXT DCV2 (pins 14 and 15).
34, 35, 36	COM1	Common for the external DC voltage of EXT DCV1(pins 27 and 28).

Timing chart

Figure 8 shows the timing chart. T1 through T5 indicate the time periods described in the following table. The undefined section in /Data indicates that the 4268A is processing data after analog measurement and therefore the output signal is invalid.

Time	Minimum	Maximum
T1 Trigger pulse width	$1[\mu \mathrm{~s}]$	-
T2 Measurement start delay time	-	$600[\mu \mathrm{~s}]^{*}$
T3 Screening result output hold time	$0[\mu \mathrm{~s}]$	-
T4 Screening result output setup time	$1[\mu \mathrm{~s}]$	-
T5 Trigger setup time	$0[\mu \mathrm{~s}]$	-

* When the display has been turned off.

/Data : /BIN1~/BIN9, /OUT_OF_BINS, /AUX_BIN, /PHI, /PLO, /SREJ, /OVLD, /NO_CONTACT

Figure 8. Timing chart

Electrical characteristics
 Output signals

Each output signal is outputted via open collector using photo-coupler. Voltage of each output is obtained by connecting pull-up resistors, inside or outside of the 4268A. The output signals can be divided into two groups: judgment output signals and operation output signals. Table 11 shows the electrical characteristics of the output signals. Figure 9 and Figure 10 show the circuit diagram of the judgment output signals and that of the operation output signals, respectively.

Table 11. Electrical characteristics of the handler interface output signals

Output signal	Output voltage [V] Low High	Maximum current	
[mA]			
Judgment output signals /BIN1 to /BIN9, /AUX_BIN,	0 to 0.5	DCV11	6
/OUT_OF_BINS, /PHI /PLO,			
/SREJ, /OVLD, /NO_CONTACT			

Figure 9. Circuit diagram of the handler interface input signals

Figure 10. Circuit diagram of the handler interface operation output signals

Input signals

Each input signal is connected to the LED (cathode side) of the photo-coupler. The LED (anode side) is connected to the pull-up power supply voltage. Table 12 shows the electrical characteristics of the input signals. Figure 11 shows the circuit diagram of the input signals. The amount of the current flowing through the LED varies, depending on the pull-up power supply voltage and the setting of the pull-up resistor setting switch (S2). For information on the pull-up power supply voltage and the setting of S2, refer to Preparation for Using the Handler Interface on page 20.

Table 12. Electrical characteristics of the handler interface input signals

		Input current (at Low) [mA] (typical) Input signal				Input voltage [V]		Pull-up power supply voltage DCV2*			

* +5 V or +12 V when internal power supply used EXT_DCV2 (+5 V to +15 V) when external power supply used

Power supply

The power supply for the judgment output signal pull-up and that for the operation output signal pull-up and input signal drive can be set separately. As shown below, you can select them from +5 V or +12 V of the internal power supply or external power supply. For information on how to select the power supply, refer to Setting the jumper (P17) on page 20 .

Table 13. Selecting the input/output signal pull-up/drive power supply

	Internal power supply		External power supply
Judgment output signal pull-up power supply	+5 V	+12 V	EXT_DCV1 +5 V to +24 V
Operation output signal pull-up power supply and input signal drive power supply	+5 V	+12 V	EXT_DCV2 +5 V to +15 V

Table 14. Setting of circuit common

	When internal power supply used	When external power supply used
Judgment output signal pull-up power supply	Internal common	COM1
Operation output signal pull-up power supply	Internal common	COM2

Figure 11. Circuit diagram of the handler interface input signals

Preparation for using the handler interface

Before using the handler interface, you are required to set the input/output signal drive/pull-up power supplies and the pull-up resistors.

NOTE: The information described here is designed for internal use only in the Agilent service center. Request the service center to perform the setting described here as necessary to use the handler interface.

Setting the drive/pull-up power supply

The drive/pull-up power supply is set using the jumper (P17) and the DIP switch (S2) on the A1 main board. For information on the location and socket numbers of P17, and the location and switch numbers of S2, refer to Figure 12.

Setting the jumper (P17)

P17-6, P17-7, and P17-8 let you set the operation output signal pull-up and input signal drive power supply (DCV2). Setting one of the following jumpers selects external power supply (EXT DCV2), internal power supply (+12 V), or internal power supply (+5 V).

| Socket
 number | Power supply setting when the jumper
 is set (shorted) | Factory
 setting |
| :--- | :--- | :--- | :--- |
| P17-8 | For the operation output signal pull-up and input
 signal drive power supply, external power supply
 (EXT DCV1) is specified. | Short |
| P17-7 | For the operation output signal pull-up and input
 signal drive power supply, internal power supply
 $(+12 ~ V) ~ i s ~ s p e c i f i e d . ~$ | Open |
| P17-6 | For the operation output signal pull-up and input
 signal drive power supply, internal power supply
 $++5 \mathrm{~V})$ is specified. | Open |

NOTE: Set (short) only one of P17-6, P17-7, and P178. Do not set (short) two or more at the same time.

NOTE: P17-5 and P17-4 are not used at present. Do not connect anything.

P17-3, P17-2, and P17-1 let you set the judgment output signal pull-up power supply (DCV1). Setting one of the following jumpers selects external power supply (EXT DCV1), internal power supply $(+12 \mathrm{~V})$, or internal power supply (+5 V).

Figure 12. A1 main board

Socket number	Power supply setting when the jumper is set (shorted)	Factory setting	Setting the jumpers (P18, P19) P17-5 and P17-4 let you set the circuit common.		
P17-3	For the judgment output signal pull-up power supply, external power supply (EXT DCV1) is specified	Short	Socket number	Circuit common setting when the jumper is set (shorted)	Factory setting
P17-2	For the judgment output signal pull-up power supply, internal power supply (+12 V) is specified.	Open	P18	External power supply's (EXT DCV2) common (COM2) and 4268A's internal circuit common are	Short
P17-1	For the judgment output signal pull-up power supply, internal power supply (+5 V) is specified.	Open		not connected. The operation output signals and input signals are isolated.	
NOTE Set (short) only one of P17-3, P17-2, and P17-1. Do not set (short) two or more at the same time. The external power supplies (EXT DCV1 and EXT DCV2) must be set within the following voltage ranges.			$\begin{aligned} & \text { P18 } \\ & 2-3 \end{aligned}$	External power supply's (EXT DCV2) common (COM2) and 4268A's internal circuit common are connected. The operation output signals and input signals are not isolated.	Open
			$\begin{aligned} & \text { P19 } \\ & 1-2 \end{aligned}$	External power supply's (EXT DCV1) common (COM1) and 4268A's internal circuit common are not connected. The judgment output signals are isolated.	Short
Voltage range [V)			P19	External power supply's (EXT DCV1) common	Open
EXT_DCV1 +5 to +24			2-3	(COM1) and 4268A's internal circuit common are connected. The judgment output signals are not	
EXT_DCV2 +5 to +15				isolated.	

NOTE: When using +5 V (pins 16,17 , and 18) of the handler interface connector, set (short) 2-3 of P18 or 2-3 of P19 to connect 4268A's internal circuit common and COM1 or COM2 so that COM1 or C0M2 is used as the power supply circuit common.

Setting the switch (S2)

Each switch of the switch (S2) must be set as follows, depending on the voltage setting of the operation output signal pull-up and input signal drive power supply (DCV2).

Voltage setting of the operation output signal pull-up and input signal drive power supply (DCV2)

$5 \mathrm{~V} \leq$ DCV2 ≤ 6	$6 \mathrm{~V}<\mathrm{DCV} 2 \leq 9 \mathrm{~V}$	$9 \mathrm{~V}<\mathrm{DCV} 2 \leq 15$
		(factory setting)

Setting the pull-up resistors

The pull-up resistors for the operation output signals and judgment output signals must be set using J12 and J13 on the A1 main board. The following table shows the location where the resistor for
each signal should be mounted, the equation to calculate the pull-up resistor values, and the typical resistance values. For information on the location of J12 and J13 and the location of the resistors for J12 and J13, refer to Figure 12.

Signal name	Resistor location	Resistance value [$\mathrm{k} \Omega$]	Typical resistance value[Ω]				
			DCV1 or DCV2 voltage				
			5 V	9 V	12 V	15 V	24 V
/OUT_OF_BINS	R1-1	DCV1/3	1.78	3.16	4.22	5.11	8.25
/BIN1	R1-2	DCV1/3	1.78	3.16	4.22	5.11	8.25
/BIN2	R1-3	DCV1/3	1.78	3.16	4.22	5.11	8.25
:	:	:	:	:	:	:	:
/BIN8	R1-9	DCV1/3	1.78	3.16	4.22	5.11	8.25
/BIN9	R1-10	DCV1/3	1.78	3.16	4.22	5.11	8.25
/AUX_BIN	R1-11	DCV1/3	1.78	3.16	4.22	5.11	8.25
/PHI	R2-1	DCV1/3	1.78	3.16	4.22	5.11	8.25
/PLO	R2-2	DCV1/3	1.78	3.16	4.22	5.11	8.25
/SREJ	R2-3	DCV1/3	1.78	3.16	4.22	5.11	8.25
(reserved)	R2-4	-	-	-	-	-	-
/NO_CONTACT	R2-5	DCV1/3	1.78	3.16	4.22	5.11	8.25
/OVLD	R2-6	DCV1/3	1.78	3.16	4.22	5.11	8.25
(reserved)	R2-7	-	-	-	-	-	-
(reserved)	R2-8	-	-	-	-	-	-
/ALARM	R2-9	DCV2/3	1.78	3.16	4.22	5.11	-
/INDEX	R2-10	DCV2/3	1.78	3.16	4.22	5.11	-
/EOM	R2-11	DCV2/3	1.78	3.16	4.22	5.11	-

[^0]The resistors are not factory-mounted. R2-4, R2-7, and R2-8 are reserved. Do not connect anything.

Procedure to remove the cover

This section describes how to disconnect the cables that hinder the operator from removing and attaching the cover when setting the drive/pull-up power supply or mounting pull-up resistors.

WARNING: Perform this work when 10 minutes or more have elapsed after disconnecting the power cord. When the 4268A is operating, or immediately after the power is turned off, dangerous electrical energy or voltage exists. Therefore, sufficient time is required after disconnecting the power cord to discharge the internal capacitor.

NOTE: When removing the cover, setting the drive/pull-up power supply, and mounting pull-up resistors, perform the work in a place with static protection, wearing a ground strap.

Step 1. Disconnect Agilent 4268A's power cord and wait for 10 minutes.

Step 2. Remove the two screws that secure the cover on the rear panel of the chassis.

Step 3. While holding the front panel bezel, slide the cover backward to remove it.

Step 4. Disconnect the cable connected to the A2 CPU board from the GPIB connector on the rear panel.

Step 5. If the scanner interface (option) is installed, disconnect the cable connected to the A1 mainboard from the scanner interface connector on the rear panel.

NOTE: When mounting pull-up resistors, exercise care not to damage surrounding parts (including cables and connectors) with a soldering iron or otherwise.

Agilent Technologies' Test and Measurement Support, Services, and Assistance
Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

Agilent T\&M Software and Connectivity

Agilent's Test and Measurement software and connectivity products, solutions and developer network allows you to take time out of connecting your instruments to your computer with tools based on PC standards, so you can focus on your tasks, not on your connections. Visit www.agilent.com/find/connectivity for more information.

By internet, phone, or fax, get assistance with all your test \& measurement needs

Phone or Fax	Korea:
United States:	(tel) (82 2) 20045004
(tel) 8004524844	(fax) (82 2) 20045115
Canada:	Latin America:
(tel) 8778944414	(tel) (305) 2697500
(fax) 9052826495	(fax) (305) 2697599
China:	Taiwan:
(tel) 8008100189	(tel) 0800047866
(fax) 8008202816	(fax) 0800286331
Europe:	Other Asia Pacific
(tel) (31 20) 5472323	Countries:
(fax) (31 20) 5472390	(tel) (65) 63758100
Japan:	(fax) (65) 68360252
(tel) (81) 426567832	Email:
(fax) (81) 426567840	tm_asia@agilent.com

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the
products and applications you select.

Korea:
(tel) (82 2) 20045004 Latin America: (tel) (305) 2697500 (fax) (305) 2697599 tel) 0800047866 (fax) 0800286331 Countries: (tel) (65) 63758100 Email: tm_asia@agilent.com

Online Assistance:

www.agilent.com/find/assist

Product specifications and descriptions in this document subject to change without notice.
© Agilent Technologies, Inc. 2002
Printed in USA, November 20, 2002 5968-3970E

[^0]: * The Product numbers of the resistors are as follows:
 $1.78 \mathrm{k} \Omega$ 0757-0278
 $3.16 \mathrm{k} \Omega \quad 0757-0279$
 $4.22 \mathrm{k} \Omega \quad 0698-3154$
 $5.11 \mathrm{k} \Omega \quad 0757-0438$
 $8.25 \mathrm{k} \Omega \quad 0757-0441$

